Hybrid spin and valley quantum computing with singlet-triplet qubits.

نویسندگان

  • Niklas Rohling
  • Maximilian Russ
  • Guido Burkard
چکیده

The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Computing with Spin and Valley Qubits in Quantum Dots

This thesis addresses the concept of quantum computing with semiconductor quantum dots. The basic unit of a quantum computer is a quantum mechanical two-level system, the so-called quantum bit (qubit). The qubit can be defined as the spin of an electron confined in a quantum dot or as a two-dimensional subspace of the Hilbert space for several spins. Some semiconductors have several minima in t...

متن کامل

Valley-spin blockade and spin resonance in carbon nanotubes.

The manipulation and readout of spin qubits in quantum dots have been successfully achieved using Pauli blockade, which forbids transitions between spin-triplet and spin-singlet states. Compared with spin qubits realized in III-V materials, group IV materials such as silicon and carbon are attractive for this application because of their low decoherence rates (nuclei with zero spins). However, ...

متن کامل

Screening of charged impurities with multielectron singlet-triplet spin qubits in quantum dots

Charged impurities in semiconductor quantum dots comprise one of the main obstacles to achieving scalable fabrication and manipulation of singlet-triplet spin qubits. We theoretically show that using dots that contain several electrons each can help to overcome this problem through the screening of the rough and noisy impurity potential by the excess electrons. We demonstrate how the desired sc...

متن کامل

Spin interactions and switching in vertically tunnel-coupled quantum dots

We determine the spin-exchange coupling J between two electrons located in two vertically tunnel-coupled quantum dots, and its variation when magnetic ~B! and electric ~E! fields ~both in-plane and perpendicular! are applied. We predict a strong decrease of J as the in-plane B field is increased, mainly due to orbital compression. Combined with the Zeeman splitting, this leads to a singlet-trip...

متن کامل

Coupling spin qubits via superconductors.

We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 113 17  شماره 

صفحات  -

تاریخ انتشار 2014